Likelihood function:

L(θ)=L(θ;x1,x2,...,xn)=i=1nf(xi;θ)=f(x1;θ)...f(xn;θ)

It is often easier to consider

lnL(θ)=i=1nlnf(xi;θ)

Maximum Likelihood Estimator:

θ^=argmaxL(θ)=argmaxlnL(θ)

Method of Moments:

E(X)=h(θ)SetX¯=h(θ~)Solve for θ~

Consider a single observation X of a Binomial random variable with n trials and probability of success p. That is,

P(X=k)=(nk)pk(1p)nk,k=0,1,...,n

Obtain the method of moments estimator of p,p~

Binomial: E(X)=np

X=np~p~=Xn

Obtain the maximum likelihood estimator of p,p^

L(p)=(nx)px(1p)nx

lnL(p)=ln(nx)+x lnp+(nx)ln(1p)

ddplnL(p)=xpnx1p=xxpnp+xpp(1p)=xnpp(1p)